Galloping instability of viscous shock waves
نویسندگان
چکیده
Motivated by physical and numerical observations of time oscillatory “galloping”, “spinning”, and “cellular” instabilities of detonation waves, we study Poincaré–Hopf bifurcation of traveling-wave solutions of viscous conservation laws. The main difficulty is the absence of a spectral gap between oscillatory modes and essential spectrum, preventing standard reduction to a finite-dimensional center manifold. We overcome this by direct Lyapunov–Schmidt reduction, using detailed pointwise bounds on the linearized solution operator to carry out a nonstandard implicit function construction in the absence of a spectral gap. The key computation is a space-time stability estimate on the transverse linearized solution operator reminiscent of Duhamel estimates carried out on the full solution operator in the study of nonlinear stability of spectrally stable traveling waves.
منابع مشابه
The refined inviscid stability condition and cellular instability of viscous shock waves
Combining work of Serre and Zumbrun, Benzoni-Gavage, Serre, and Zumbrun, and Texier and Zumbrun, we propose as a mechanism for the onset of cellular instability of viscous shock and detonation waves in a finite-cross-section duct the violation of the refined planar stability condition of Zumbrun–Serre, a viscous correction of the inviscid planar stability condition of Majda. More precisely, we ...
متن کاملThe Gap Lemma and Geometric Criteria for Instability of Viscous Shock Profiles
An obstacle in the use of Evans function theory for stability analysis of traveling waves occurs when the spectrum of the linearized operator about the wave accumulates at the imaginary axis, since the Evans function has in general been constructed only away from the essential spectrum. A notable case in which this difficulty occurs is in the stability analysis of viscous shock profiles. Here w...
متن کاملStability of detonation profiles in the ZND limit
Confirming a conjecture of Lyng–Raoofi–Texier–Zumbrun, we show that stability of strong detonation waves in the ZND, or small-viscosity, limit is equivalent to stability of the limiting ZND detonation together with stability of the viscous profile associated with the component Neumann shock. More, on bounded frequencies the nonstable eigenvalues of the viscous detonation wave converge to those ...
متن کاملTransition to longitudinal instability of detonation waves is generically associated with Hopf bifurcation to time-periodic galloping solutions
We show that transition to longitudinal instability of strong detonation solutions of reactive compressible Navier–Stokes equations is generically associated with Hopf bifurcation to nearby time-periodic “galloping”, or “pulsating”, solutions, in agreement with physical and numerical observation. The analysis is by pointwise semigroup techniques introduced by the authors and collaborators in pr...
متن کاملTransition to instability of planar viscous shock fronts: the refined stability condition
Classical inviscid stability analysis determines stability of shock waves only up to a region of neutral stability occupying an open set of physical parameters. To locate a precise transition point within this region, it has been variously suggested that nonlinear and or viscous effects should be taken into account. Recently, Zumbrun and Serre [67, 62, 63] showed that transition under localized...
متن کامل